

Chapter 7

Alternating Current

Chapter 7

Alternating Current

BOARD-2013

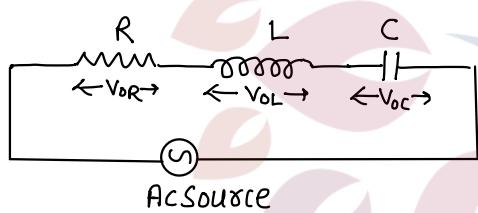
1. The voltage applied in an alternating LCR series circuit is 220V. If $R = 8\Omega$, $X_C = X_L = 6\Omega$ then find value of the following-
- sms value of voltage
 - Impedance of circuit

[1 Mark]

$\Rightarrow V_{\text{rms}} = 220V$

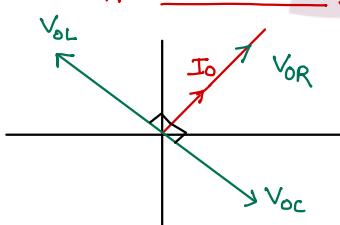
$R = 8\Omega$

$X_L = 6\Omega \quad X_C = 6\Omega$


$Z = \sqrt{R^2 + (X_L - X_C)^2} \quad \{X_L = X_C\}$

$Z = \sqrt{(8)^2} = 8\Omega$

2. Draw the phasor diagram of Series LCR circuit with AC voltage source. Derive value of impedance of this circuit.


[4 Marks]

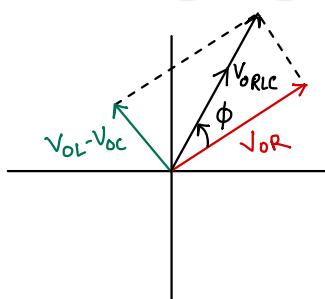
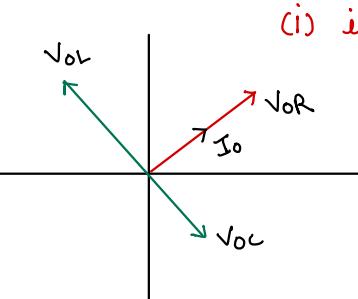
\Rightarrow

Suppose there are resistance (R), inductance (L) & capacitance (C) connected in series with applied AC source.

A. Phasor Diagram -

Phase difference b/w V_{OR} & I_0 zero.

- V_{OL} leads I_0 by $\pi/2$ angle.



- V_{OC} lags I_0 by $\pi/2$ angle.

→ There are three possible situation

(i) $X_L > X_C$ or $V_{OL} > V_{OC}$

(ii) $X_C > X_L$ or $V_{OC} > V_{OL}$

(iii) $X_L = X_C$

→ V_{ORLC} leads current by ϕ angle.

④ Impedance of RLC -

In $\triangle OAB$

$$\begin{aligned} V_{ORLC}^2 &= V_{OR}^2 + (V_{OL} - V_{OC})^2 \\ &= (I_0 R)^2 + (I_0 X_L - I_0 X_C)^2 \\ &= I_0^2 R^2 + I_0^2 (X_L - X_C)^2 \\ &= I_0^2 [R^2 + (X_L - X_C)^2] \end{aligned}$$

$$\frac{V_{o_{RLC}}}{I_o} = \sqrt{R^2 + (X_L - X_C)^2}$$

$$Z_{RLC} = \sqrt{R^2 + (X_L - X_C)^2}$$

phase difference -

$$\tan \phi = \frac{V_{oL} - V_{oC}}{V_{oR}}$$

$$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

Note- if $X_C > X_L$

$$Z_{RLC} = \sqrt{R^2 + (X_C - X_L)^2}, \quad \phi = \tan^{-1} \left(\frac{X_C - X_L}{R} \right)$$

if $X_C = X_L$

$$Z_{RLC} = R, \quad \phi = 0^\circ$$

BOARD-2013 (Supp)

3. what is the avg value of power over a one cycle in AC circuit? [1]

$$\Rightarrow P_{avg} = V_{rms} I_{rms} \cos \phi$$

4. Define power factor. Find its value if the circuit -

- (i) purely inductive
- (ii) Series LCR resonance

\Rightarrow Ratio of avg. power & virtual power is called Power factor.

$$\cos \phi = \frac{P_{avg}}{P_{vir}}$$

- (i) for pure resistance $\phi = 0^\circ \quad \cos \phi = 1$
- (ii) for pure inductive/capacitive $\phi = 90^\circ \quad \cos \phi = 0$
- (iii) In Series LCR Resonance

$$\phi = 0^\circ \quad \cos \phi = 1$$

BOARD-2014

5. Draw a curve showing variation in AC with frequency in LCR resonance circuit. obtain expression of band width. 1+2=3

BOARD-2015

6. write the average value of current over a complete cycle of current.

$$\Rightarrow \text{zero}$$

7. Match the following :- (6 x 1/2 = 3)

	Column I		Column II
i)	Resonant frequency	a)	$VI \cos \phi$
ii)	Quality factor	b)	$\frac{1}{2} LI^2$
iii)	Average power	c)	$\frac{1}{\sqrt{LC}}$
iv)	Impedance	d)	$\sqrt{R^2 + (X_L - X_C)^2}$
v)	Magnetic potential energy	e)	$\frac{-E}{\left(\frac{dI}{dt}\right)}$
vi)	Coefficient of self-induction	f)	$\frac{\omega_0 L}{R}$

⇒ Resonant frequency - $\pm 1/\sqrt{LC}$

Quality factor - $\omega_0 L/R$

Average power - $VI \cos \phi$

Impedance - $\sqrt{R^2 + (X_L - X_C)^2}$

Magnetic potential Energy - $\frac{1}{2} LI^2$

Coefficient of self-inductance - $-E/\left(\frac{dI}{dt}\right)$

BOARD-2016

8. A light bulb is rated at 100W for 220V supply. Find peak voltage of source.

$$V_{rms} = 220 \text{ V}$$

$$V_{rms} = \frac{V_0}{\sqrt{2}}$$

$$V_0 = \sqrt{2} \times 220 \text{ V}$$

$$V_0 = 311 \text{ Volts}$$

BOARD-2017

9. Write any two energy loss occurring in transformers. How can these be minimised? why does electric power is transmitted at high voltage upto large distance? [3 Marks]

⇒ Energy loss in transformer -

1. Copper Loss
2. Eddy current Loss
3. Flux leakage
4. Hysteresis loss

1. Copper Loss - Due to resistance of Cu wire of transformer coils, heat produces.

→ To reduce Cu loss we make transformer coil with thick wire of Cu.

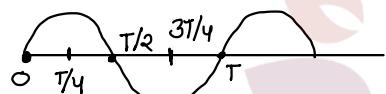
2. Flux leakage - 100% flux of primary coil can't be linked with secondary coil. So, there is flux leakage.

→ To reduce flux leakage, make sec. coil over the primary coil.

Reason of High voltage upto Large distance - To reduce energy loss during transmission over long distances.

$$P = VI$$

at constant power


$$I \propto \frac{1}{V}$$

at High voltage current is low
so, $I^2 R t$ is less.

BOARD-2018

10. Find the time taken by AC attain zero from its peak value. The frequency of AC is 50 Hz. (1 Mark)

⇒

Time taken by AC attain zero from its peak - $T/4$

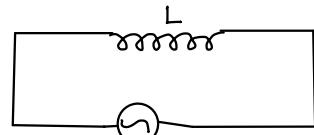
$$t = T/4 \quad \text{---} \textcircled{1}$$

$$T = \frac{1}{f} = \frac{1}{50} = 0.02$$

put value -

$$t = \frac{0.02}{4}$$

$$t = 0.005 \text{ sec}$$


11. (i) write one merit & demerit of AC in compare to DC.
(ii) Obtain following in pure inductive AC circuit-

- Instant value of current
- Reactance of circuit
- Peak value of current.
- Draw curve for power in pure inductive

⇒ AC v/s. DC - **(A) Merit** - Transmission to remote place is easy & cheap compare to DC.

(B) Demerit - High peak voltage ($V_o = \sqrt{2} V_{rms}$) so safety concern.

Pure Inductance - 1. Circuit Diagram -

2. Alternating voltage -

$$V = V_o \sin \omega t \quad \text{---} \textcircled{1}$$

3. Alternating Current -

$$|I| = \frac{1}{\omega} \frac{dV}{dt} \quad \text{---} \textcircled{2}$$

$$|e| = V = V_0 \sin \omega t - \textcircled{3}$$

from \textcircled{2} & \textcircled{3}

$$V_0 \sin \omega t = L \frac{dI}{dt}$$

$$dI = \frac{V_0}{L} \sin \omega t dt$$

$$\int dI = \frac{V_0}{L} \int \sin \omega t dt$$

$$I = \frac{V_0}{L} \left[-\frac{\cos \omega t}{\omega} \right]$$

$$I = \frac{V_0}{\omega L} (-\cos \omega t)$$

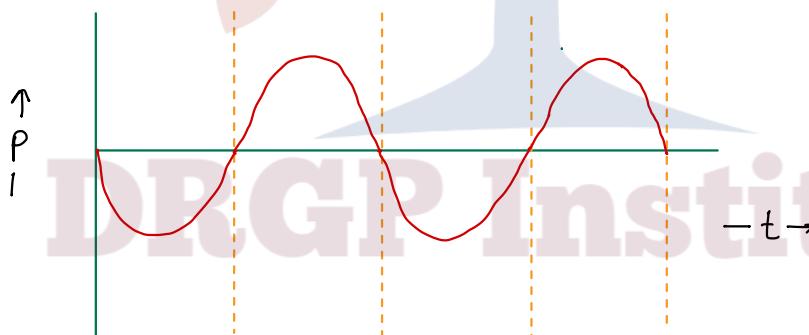
$$\left\{ \begin{array}{l} \cos \omega t = \sin(\pi/2 - \omega t) \\ -\cos \omega t = \sin(\omega t - \pi/2) \end{array} \right\}$$

$$I = \frac{V_0}{\omega L} \sin(\omega t - \pi/2)$$

$$I = I_0 \sin(\omega t - \pi/2)$$

$$\left\{ \begin{array}{l} I = \frac{V_0}{X_L} \\ X_L = \omega L \end{array} \right\}$$

$$\left\{ \begin{array}{l} I = \frac{V_0}{X_L} \\ X_L = \omega L \end{array} \right\}$$


(i) Instant value -

(ii) Reactance - $X_L = \omega L$

(iii) Peak current - $I_0 = \frac{V_0}{X_L}$

Note:- phase difference = $\pi/2$

{ Current lags voltage by $\pi/2$ }.

BOARD-2018 (Supp)

12. The value of AC voltage & current in a LCR circuit are given by- [2 Marks]

$$V = 210 \sin 200t$$

$$I = 7 \sin(200t - \pi/3)$$

find Impedance & Frequency

$$V_m = 210 \sin 200t, \quad I = 7 \sin(200t - \pi/3)$$

$$V_0 = 210 \text{ volt}$$

$$I_0 = 7 \text{ A}$$

$$(i) \text{ Impedance} - Z = \frac{V_0}{I_0} = \frac{210}{7} = 30 \Omega$$

⇒

$$(ii) V = 210 \sin 200t \text{ compare it } V = V_0 \sin \omega t$$

$$\omega = 200$$

$$2\pi n = 200$$

$$n = \frac{200}{2 \times 3.14}$$

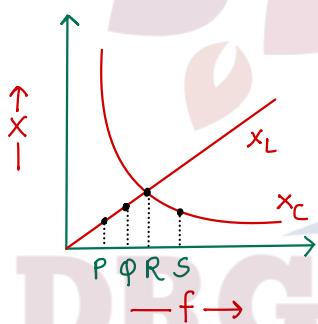
$$n = 31.8 \text{ Hz}$$

BOARD-2019

13. Write the relationship b/w rms value & peak value of AC.

$$\Rightarrow I_{\text{rms}} = \frac{I_0}{\sqrt{2}}$$

14. In LCR AC circuit $R = 100\Omega$, $X_L = 100\Omega$ & $X_C = 100\Omega$ write the value of Impedance.


$$\begin{aligned} Z &= \sqrt{R^2 + (X_L - X_C)^2} \\ Z &= \sqrt{(10)^2 + (100 - 100)^2} \\ Z &= 10 \Omega \end{aligned}$$

15. Draw vector diagram (Phasor diagram) of LCR circuit and derive value of impedance.

BOARD-2020

16. In a given diagram, write a point showing resonant state.

\Rightarrow

R = Resonant state
($X_L = X_C$)

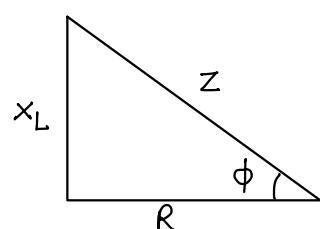
17. The power factor of a coil is 0.707 at frequency 50 Hz. If frequency is doubled, then calculate the power factor of coil. [2 Marks]

\Rightarrow

$$\begin{aligned} \cos \phi_1 &= 0.707 \text{ at } f_1 = 50 \text{ Hz} \\ \text{if } f_2 &= 100 \text{ Hz} \quad \cos \phi_2 = ? \end{aligned}$$

$$\cos \phi_1 = R/Z = 0.707$$

$$\cos \phi_1 = \frac{1}{\sqrt{2}} = \cos \pi/4$$


so,

$$\phi_1 = \pi/4$$

$$\tan \phi_1 = \tan 45^\circ$$

$$\tan \phi_1 = 1 \quad \text{--- (1)}$$

$$\tan \phi_1 = \frac{X_L}{R}$$

$$\frac{\tan \phi_1}{\tan \phi_2} = \frac{X_{L1}}{X_{L2}} = \frac{\omega_1 L}{\omega_2 L} = \frac{2\pi n_1 L}{2\pi n_2 L}$$

$$\frac{\tan \phi_1}{\tan \phi_2} = \frac{n_1}{n_2}$$

$$\tan \phi_2 = \frac{n_2}{n_1} \times \tan \phi_1$$

$$\tan \phi_2 = \frac{n_2}{n_1}$$

given $n_2 = 2n_1$, $n_1 = 50\text{Hz}$

$n_2 = 100\text{Hz}$

$$\tan \phi_2 = \frac{2}{1} \rightarrow P$$

$$\text{So } H = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$\cos \phi_2 = \frac{1}{H}$$

$$\cos \phi_2 = \frac{1}{\sqrt{5}}$$

18. The voltage and current in an A.C are $V = 50 \sin 314t$ and

$$I = 10 \sin (314t + \pi/4) \text{A}$$

calculate (i) wattless current

(ii) Root mean square voltage.

⇒ (i) wattless current - Not in syllabus $I_{w.L} = I_{\text{rms}} \sin \phi$

$$(ii) V_{\text{rms}} = \frac{V_0}{\sqrt{2}} = \frac{50}{\sqrt{2}} = 50 \times 0.707 = 35.35 \text{ Vot}$$

DRGP Institute
BOARD-2021

19. The I_{rms} in AC is $\sqrt{2}\text{A}$. find its peak value.

$$\Rightarrow I_0 = \sqrt{2} I_{\text{rms}} = \sqrt{2} (\sqrt{2}) = 2\text{A}$$

20. A transformer steps up 220V to 2200V. If number of turns in secondary coil is 1000 then calculate number of turns in primary coil.

$$\Rightarrow \frac{E_s}{E_p} = \frac{N_s}{N_p}$$

$$\frac{2200}{220} = \frac{1000}{N_p}$$

$$N_p = 100$$

BOARD-2022

BOARD-2023

21. Frequency of AC $I = 200 \sin(60\pi t + \pi/6)$

- a. 120 Hz
- b. 60 Hz
- c. 90 Hz
- d. 30 Hz

$$\Rightarrow I = 200 \sin(60\pi t + \pi/6)$$

Compare it with

$$I = I_0 \sin(\omega t + \phi)$$

$$I = I_0 \sin(2\pi n t + \phi)$$

$$2\pi n = 60\pi$$

$$n = \frac{60}{2}$$

$$n = 30 \text{ Hz}$$

22. Find the value of power coefficient for the following circuit-

(i) Pure capacitive circuit

(ii) Series LCR resonant circuit

\Rightarrow

$$\text{Power factor} - \cos \phi = \frac{R}{Z}$$

(i) for pure capacitive circuit

$$\phi = 90^\circ$$

$$\cos \phi = 0$$

(ii) Series LCR resonant circuit

$$R = Z \quad \{ \text{Because } x_L = x_C \}$$

$$\cos \phi = 1$$

23. Describe any three losses in transformer. How these can be minimised?

BOARD-2024

24. The mean value of AC in a complete cycle is-

\Rightarrow Zero.

25. Prove that the peak value of AC is $\sqrt{2}$ times of I_{rms} value.

\Rightarrow

$$I = I_0 \sin \omega t$$

Square both sides -

$$I^2 = I_0^2 \sin^2 \omega t$$

Mean value -

$$\bar{I}^2 = I_0^2 \overline{\sin^2 \omega t}$$

$$\bar{I}^2 = I_0^2 (1/2)$$

$$\bar{I}^2 = \frac{I_0^2}{2}$$

$$\sqrt{\bar{I}^2} = \sqrt{\frac{I_0^2}{2}}$$

$$I_{rms} = \frac{I_0}{\sqrt{2}}$$

$$I_0 = \sqrt{2} I_{rms}$$

26.

$$I = 4 \sin \omega t$$

calculate average power.

$$V = 200 \sin(\omega t + \pi/3)$$

⇒

$$\begin{aligned} P_{avg} &= V_{rms} I_{rms} \cos \phi \\ &= \frac{V_0}{\sqrt{2}} \frac{I_0}{\sqrt{2}} \cos \phi \\ &= \frac{200}{\sqrt{2}} \cdot \frac{4}{\sqrt{2}} \cos \pi/3 \\ &= 400 \times \frac{1}{2} \\ &= 200 \text{ watt} \end{aligned}$$

$$V_0 = 200, I_0 = 4$$

$$\phi = \pi/3$$

27. (i) Prove that the average power supplied to an inductor over one complete cycle is zero.

(ii) If in LCR AC $R = 24\Omega$, $X_L = 110\Omega$ & $X_C = 110\Omega$ calculate impedance.

⇒

$$(i) P = VI$$

$$P = V_0 \sin \omega t \cdot I_0 \sin(\omega t + \phi)$$

$$P = V_0 I_0 \sin \omega t \sin(\omega t + \phi)$$

$$P = V_0 I_0 \sin \omega t (\sin \omega t \cos \phi + \cos \omega t \sin \phi)$$

$$P = V_0 I_0 \sin^2 \omega t \cos \phi + V_0 I_0 \sin \omega t \cos \omega t \sin \phi$$

$$P_{avg} = \bar{P} = V_0 I_0 \overline{\sin^2 \omega t} \cos \phi + V_0 I_0 \overline{\sin \omega t \cos \omega t} \sin \phi$$

$$\left. \begin{aligned} \overline{\sin^2 \omega t} &= 1/2 \\ \overline{\sin \omega t \cos \omega t} &= 0 \end{aligned} \right\}$$

$$P_{avg} = V_0 I_0 \left(\frac{1}{2}\right) \cos \phi + 0$$

$$P_{avg} = \frac{V_0}{\sqrt{2}} \cdot \frac{I_0}{\sqrt{2}} \cos \phi$$

$$P_{avg} = V_{rms} I_{rms} \cos \phi$$

for pure inductive circuit $\phi = 90^\circ$

$$\begin{aligned}
 P_{avg} &= \text{Vrms I rms Cos} \phi \\
 P_{avg} &= 0 \quad \{ \cos \phi = 0 \}
 \end{aligned}$$

(ii)

$$\begin{aligned}
 Z &= \sqrt{R^2 + (x_L - x_C)^2} \\
 Z &= \sqrt{(24)^2 + (110 - 110)^2} \\
 Z &= \sqrt{(24)^2} \\
 Z &= 24 \Omega
 \end{aligned}$$

