

Chapter 3

Current Electricity

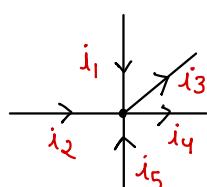
Chapter 3

Current Electricity

BOARD-2013

1. Write the corresponding values of x and y for which the lengths of conductors $x = 4\Omega$ and $y = 48 \times 10^{-8} \Omega \cdot \text{m}$ are reduced to half. (1)

$$\Rightarrow x = 4\Omega$$

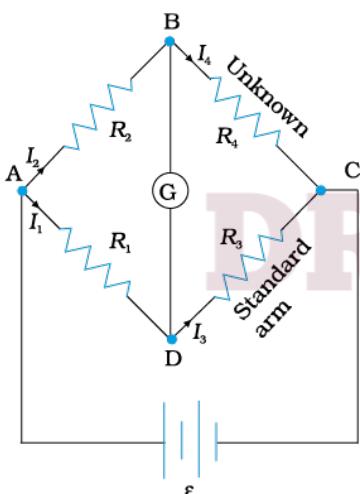

↳ Resistance ($R \propto l$)
So when length reduces to half -
 $x = 2\Omega$

$$y = 48 \times 10^{-8} \Omega \cdot \text{m}$$

↳ Resistivity (ρ doesn't depend on length)
So, $y = 48 \times 10^{-8} \Omega \cdot \text{m}$

2. Write Kirchhoff's first rule (Law of junction). Drawing a circuit diagram of wheatstone bridge, derive condition for zero deflection in the bridge.

\Rightarrow **Kirchhoff's Junction Rule** - At any junction, the sum of the currents entering the junction is equal to the sum of currents leaving the junction.



$$i_1 + i_2 + i_5 = i_3 + i_4$$

↳ Incoming Outgoing

→ Applicable for both loop and Open type cir.
→ Conservation of charge.

wheatstone bridge - Suppose there are four resistors R_1, R_2, R_3, R_4 connected in w.B. Battery is connected b/w A & C and Galvanometer connected b/w B & D.

→ In balanced conditions resistor are such that there are no current through Galvanometer.

→ By Kirchhoff's junction rule on junction B & D -

$$I_1 = I_3$$

$$I_2 = I_4$$

→ By Kirchhoff's loop rule in ADDA -

$$-I_1 R_1 + I_2 G + I_2 R_2 = 0$$

$$-I_1 R_1 + I_2 R_2 = 0 \quad \{ I_2 G = 0 \}$$

$$I_1 R_1 = I_2 R_2 \quad \text{---} \textcircled{1}$$

in loop CDAB -

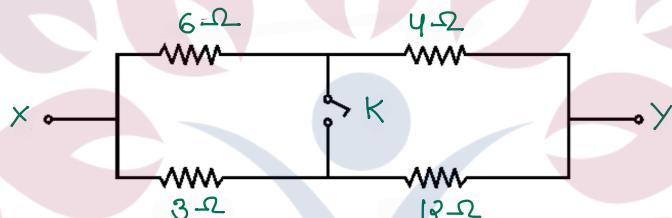
$$-I_3 R_3 + I_2 G + I_4 R_4 = 0$$

$$-I_3 R_3 + I_2 R_4 = 0$$

$$I_3 R_3 = I_2 R_4 \quad \text{---} \textcircled{2}$$

$$\text{Eq}^n \textcircled{1} \div \text{Eq}^n \textcircled{2}$$

$$\frac{I_1 R_1}{I_1 R_3} = \frac{I_2 R_2}{I_2 R_4}$$


$$\frac{R_1}{R_3} = \frac{R_2}{R_4}$$

Note - If R_1, R_2, R_3 are known resistor and R_4 are unknown resistor then

$$R_4 = \frac{R_2 R_3}{R_1}$$

3. In the given circuit write the value of resultant resistance in b/w x and y when Key K is -

(i) open (ii) closed

1. when Key is open:- $R_1 = 6\Omega$ & $R_2 = 4\Omega$ are in series

$R_3 = 3\Omega$ & $R_4 = 12\Omega$ are in series

$$R_{12} = R_1 + R_2 = 6 + 4 = 10\Omega$$

$$R_{34} = R_3 + R_4 = 3 + 12 = 15\Omega$$

→ Now R_{12} & R_{34} are in parallel.

$$\frac{1}{R} = \frac{1}{R_{12}} + \frac{1}{R_{34}}$$

$$\frac{1}{R} = \frac{1}{10} + \frac{1}{15} = \frac{3+2}{30}$$

$$R = \frac{30}{5} = 6\Omega$$

2. when Key is close - R_1 & R_3 are in parallel
& R_2 & R_4 are in parallel

$$\frac{1}{R_{13}} = \frac{1}{R_1} + \frac{1}{R_3}$$

$$\frac{1}{R_{13}} = \frac{1}{6} + \frac{1}{3} = \frac{1+2}{6}$$

$$R_{13} = 2\Omega$$

$$\frac{1}{R_{24}} = \frac{1}{R_2} + \frac{1}{R_4}$$

$$\frac{1}{R_{24}} = \frac{1}{4} + \frac{1}{12} = \frac{3+1}{12}$$

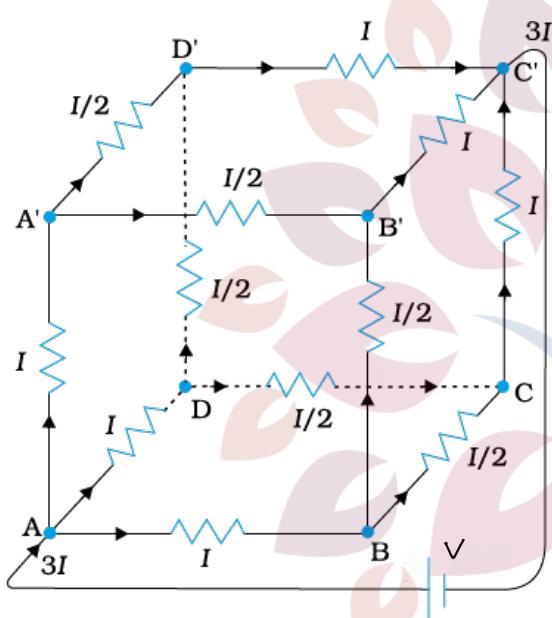
$$R_{24} = 3\Omega$$

$$R = R_{13} + R_{24}$$

$$R = 2 + 3 = 5\Omega$$

BOARD-2013 (Supp.)

4. Write unit and dimension of mobility of charge. (1 Marks)


$$\Rightarrow \mu = \frac{Vd}{E}$$

(Drift velocity per unit electric field)

$$\text{unit} - \frac{m/s}{V/m} = m^2/Vs$$

$$\text{Dimension} - [M^{-1}L^0T^2A^1]$$

5. If resistance each of σ - Ω resistance are joined in cubical network, then calculate the equivalent resistance R at the corner opposite to diagonals of this network.

- This network is not reducible to a simple series and parallel combination of resistors.
- So, we use symmetric arrangement to obtain eq. resistance.
- Apply Kirchoff's Second Rule b/w A & C' point -

$$-I\sigma - \frac{I\sigma}{2} - I\sigma + V = 0$$

$$V = I\sigma + \frac{I\sigma}{2} + I\sigma$$

By Ohm's Law

$$3IR = I(\sigma + \frac{\sigma}{2} + \sigma)$$

$$3R = \frac{2\sigma + \sigma + 2\sigma}{2}$$

$$R = \frac{5\sigma}{6} \Omega$$

BOARD-2014

6. Obtain equation of $\vec{J} = \sigma \vec{E}$ (2 Marks)

(basis of drift velocity)

Ans- J (current density) -

$$J = \frac{I}{A} \quad \text{--- (1)}$$

Relation b/w I & V_d (drift velocity)

$$I = nA V_d e$$

put in eqⁿ (1)

$$J = \frac{nA V_d e}{A}$$

$$J = n V_d e \quad \text{--- (2)}$$

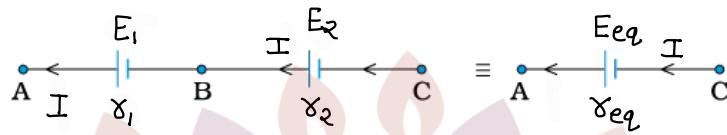
By definition of drift velocity -

$$V_d = \frac{eE}{m} \tau$$

where $e = e^-$
 $E = \text{Electric field}$
 $m = \text{mass}$
 $T = \text{Relaxation time}$

$$J = ne \left(\frac{eE}{m} \right) T$$

$$J = \frac{n e^2 T}{m} E$$


$$\sigma = \frac{n e^2 T}{m}$$

↳ conductivity

$$J = \sigma E$$

7. Two cells of emf E_1 & E_2 are connected in series. Their internal resistance are r_1 & r_2 . Compute eq. resistance & eq. emf.

Ans.

combination of cells in which one terminal of a cell is joined with opposite terminal of 2nd cell, is known as series combination.

→ Suppose two cells of E_1 & E_2 emf and r_1 & r_2 internal resistance. Current flowing in both are same but terminal voltage on both cell is different i.e. V_1 & V_2 .

$$V = V_1 + V_2$$

$$V = E_1 - I r_1 + E_2 - I r_2$$

$$V = (E_1 + E_2) - I (r_1 + r_2)$$

→ If we wish to replace the combination by a single cell b/w A & C of emf E_{eq} and r_{eq} internal resistance we would have -

$$V = E_{eq} - I (r_{eq})$$

→ Compare both -

$$E_{eq} = E_1 + E_2$$

$$r_{eq} = r_1 + r_2$$

→ Current (I) \Rightarrow

$$I = \frac{\text{E.M.F.}}{\text{Total resistance}}$$

$$I = \frac{E_{eq}}{R + r_{eq}}$$

$$I = \frac{E_1 + E_2}{R + r_1 + r_2}$$

→ if n cell -

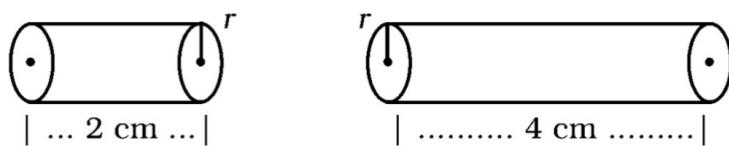
$$E_{eq} = E_1 + E_2 + \dots$$

$$r_{eq} = r_1 + r_2 + \dots$$

$$I = \frac{E_{eq}}{R + r_{eq}}$$

→ if n cell of same emf and internal resistance -

$$E_{eq} = nE$$

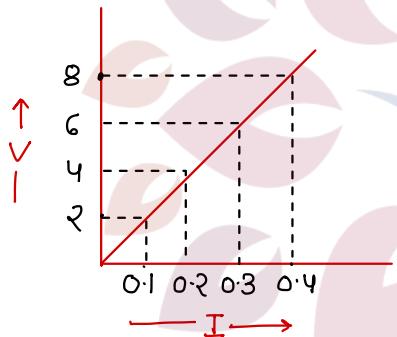

$$r_{eq} = n\sigma$$

$$I = \frac{nE}{R + n\sigma}$$

$$I = \frac{E}{R + \sigma/n}$$

BOARD-2015

8. Find Ratio of resistivity-

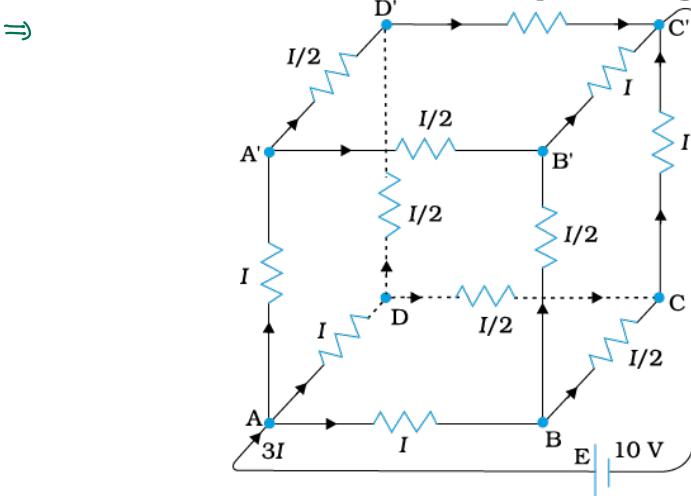

⇒ $\rho_1/\rho_2 = 1$ both have same resistivity because, resistivity only depends on nature and

9. Find value of I - [1]

BOARD-2016

10. Determine Resistance - [1]

$$R = \frac{\Delta V}{\Delta I} = \frac{8-2}{0.4-0.1}$$


$$R = \frac{6}{0.3} = 20\Omega$$

11. Write the unit of current density. [1]

⇒ Current flowing perpendicular to unit area of cross-section is called current density.

$$\vec{J} = \frac{\vec{I}}{A} \quad \text{Unit: } A/m^2$$

12. Write Kirchoff's first rule. A battery of 10V and negligible internal resistance is connected to diagonally opposite corner of cubic network consisting of 12 resistors each of 1Ω . Determine eq. resistance. [3 Marks]

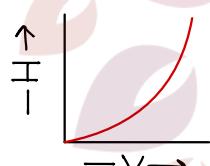
→ This network is not reducible to a simple series and parallel combination of resistors.
→ So, we use symmetric arrangement to obtain eq. resistance.
→ Apply Kirchoff's Second Rule b/w A & C' point -
 $-I\delta - \frac{I\delta}{2} - I\delta + V = 0$

$$V = I\delta + \frac{I\delta}{2} + I\delta$$

$$(3I)R = I \left(\frac{R}{2} + \frac{R}{2} + R \right)$$

$$3R = \frac{2R + R + 2R}{2}$$

$$R = \frac{5R}{6} = \frac{5}{6} \times 12 = 10\ \Omega$$


BOARD-2017

13. Define drift velocity of electrons in a conductor. [1]
 ⇒ Average velocity of e^- in opposite direction of electric field is called Drift velocity.

$$\vec{V}_d = -\frac{e\vec{E}}{m}t \quad \text{unit: m/s}$$

14. What is Ohm's Law? Write its two limitation. [2 Marks]
 ⇒ If physical condition such as length of conductor, cross-section area, temperature, nature of material remain constant then potential difference across the conductor will be directly proportional to the electric current flowing in the conductor.

Limitation:-

$$V \propto I$$

$$V = IR$$

1. Ohm's Law is not valid for semi-conductor electronic devices like diode & transistor.
2. Ohm's Law is only valid for metallic conductor. Even not valid for metallic conductor at high potential difference.

15. A battery of emf 12V and internal resistance of $2\ \Omega$ connected to resistor. If 0.5A current flows through circuit then calculate resistance of resistor. If the circuit is closed what will be terminal voltage of cell. [1+1=2]

⇒

$$E = 12V$$

$$\gamma = 2\ \Omega$$

$$I = 0.5A$$

$$R = ?, V = ?$$

$$V = E - IR$$

$$V = 12 - (0.5 \times 2)$$

$$V = 12 - 1$$

$$V = 11V$$

$$V = IR$$

$$R = \frac{V}{I}$$

$$R = \frac{12}{0.5}$$

$$R = 24\ \Omega$$

BOARD-2018

16. The resistance of a conductor is $x\Omega$ at 0°C temp. Find the temp. at which resistance of conductor become $3x\Omega$. The temp. coefficient of resistance for conductor is $0.4 \times 10^{-2} \text{ }^\circ\text{C}^{-1}$ which is constant.

$$\Rightarrow R_1 = x\Omega$$

$$R_2 = 3x\Omega$$

$$T_1 = 0^\circ\text{C}$$

$$T_2 = ?$$

$$\alpha = 0.4 \times 10^{-2} \text{ }^\circ\text{C}^{-1}$$

$$R_2 = R_1 [1 + \alpha (T_2 - T_1)]$$

$$\frac{R_2}{R_1} = 1 + \alpha (T_2 - T_1)$$

$$\frac{3x}{x} = 1 + \alpha (T_2 - T_1)$$

$$2 = \alpha (T_2 - T_1)$$

$$T_2 - T_1 = \frac{2}{0.4 \times 10^{-2}}$$

$$T_2 = 5 \times 10^2 + T_1$$

$$T_2 = 500 + 0^\circ\text{C}$$

$$T_2 = 500^\circ\text{C}$$

17. Wheat stone Bridge.

BOARD-2018 (Supp)

18. The value of physical quantities P & φ for a conductor is 4Ω and $24 \times 10^{-8} \Omega \text{xm}$. write new values of P & φ if length becomes one fourth. [1]

$$\Rightarrow P = 4\Omega \quad \varphi = 24 \times 10^{-8} \Omega \text{xm}$$

↳ Resistance ↳ Resistivity

if length becomes $1/4^{\text{th}}$

$$(i) P = 1\Omega \quad (\text{Resistance } [P] \propto \text{length})$$

$$(ii) \varphi = 24 \times 10^{-8} \Omega \text{xm} \quad (\text{Resistivity } (\varphi) \text{ doesn't depend on length}).$$

19. Deduct the microscopic form of ohm's Law [2 Marks]

$V = IR$ (ohm's Law) is often stated in an equivalent form $J = \sigma E$ where-

J = current density

σ = conductivity

E = electric field

vector form:-

$$\vec{J} = \sigma \vec{E}$$

Derivation -

$$V = IR \quad \text{--- (1)}$$

$$\text{Resistivity } \rho = \frac{RA}{l} \quad \text{then } R = \frac{\rho l}{A}$$

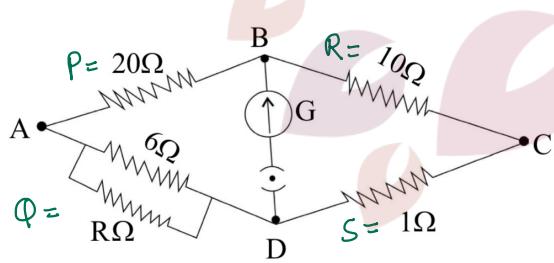
Put in eqn (1)

$$V = \frac{I \rho l}{A}$$

$$\frac{V}{l} = \frac{I \rho}{A}$$

$$E = \frac{I \rho}{A} \quad \left\{ \begin{array}{l} \uparrow \text{Electric field} \\ E = \frac{V}{l} \end{array} \right\}$$

$$E = J \rho \quad \left\{ \begin{array}{l} J = I/A \\ \downarrow \text{current density} \end{array} \right\}$$


$$E = J \times \frac{1}{\sigma} \quad \left\{ \begin{array}{l} \sigma = \text{conductivity} \end{array} \right\}$$

$$J = \sigma E$$

$$\text{Or} \quad \vec{J} = \sigma \vec{E}$$

BOARD - 2019

20. Find Unknown resistance in balanced state of WSB.

\Rightarrow At Balanced state

$$\frac{P}{R} = \frac{S}{R}$$

$$\frac{20}{R} = \frac{10}{1}$$

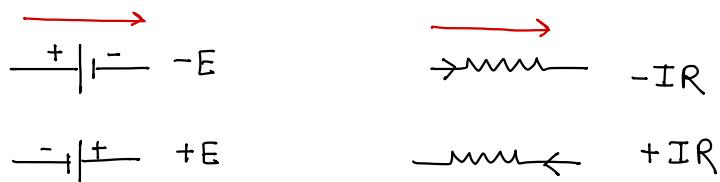
$$R = \frac{20}{10} = 2 \Omega$$

6Ω & $R \Omega$ are in parallel and equivalent
i.e. $R = 2 \Omega$

$$\frac{1}{6} + \frac{1}{R} = \frac{1}{2}$$

$$\frac{1}{R} = \frac{1}{2} - \frac{1}{6}$$

$$\frac{1}{R} = \frac{3-1}{6}$$


$$R = 6/2 = 3 \Omega \quad \text{Ans.}$$

BOARD - 2020

21. Write Kirchoff's Second Rule.

- \Rightarrow Also Known as Loop Law / Mesh Law
- \Rightarrow Algebraic sum of all the voltage in any loop is always zero.
- \Rightarrow Only valid for closed circuit

→ Based on Law of conservation of Energy.

BOARD-2020 (Supp)

22. Define current density. [1]
 23. The length of wire is 1.5m and its cross-section area is $6 \times 10^{-7} \text{ m}^2$. If the potential difference at its end is 0.9V. Calculate the current flowing in it. [$\rho = 5.6 \times 10^{-8} \Omega \text{ m}$] [2]

$$\Rightarrow l = 1.5 \text{ m} \quad A = 6 \times 10^{-7} \text{ m}^2$$

$$V = 0.9 \text{ V} \quad I = ?$$

$$\rho = 5.6 \times 10^{-8} \Omega \text{ m}$$

$$V = IR$$

$$I = \frac{V}{R} = \frac{0.9}{14 \times 10^{-7}}$$

$$I = \frac{90}{14} = 6.42 \text{ A}$$

$$R = \frac{\rho l}{A}$$

$$R = \frac{5.6 \times 10^{-8} \times 1.5}{6 \times 10^{-7}}$$

$$R = 1.4 \times 10^1 \Omega$$

BOARD-2021

24. Unit of electromotive force.

⇒ Volt.

25. Define internal resistance of cell.

⇒ Resistance offered by electrolyte solution in flow of current in cell is called Internal resistance of cell.
 SI unit = Ω

26. Draw a Labelled diagram of wsb and obtain condition of balanced point by Kirchoff's Rule.

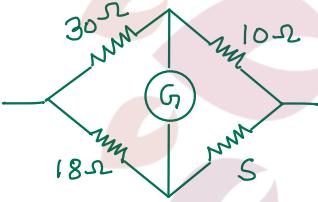
BOARD-2022

27. If two cells of emf E_1 & E_2 and internal resistance r_1 & r_2 are in parallel combination. find formula of equivalent emf.

$$\Rightarrow E_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$$

$$r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$$

28. If 12 resistors of 1Ω resistance are joined in a cubical network, then calculate the equivalent resistance at corner opposite to diagonals of this network.

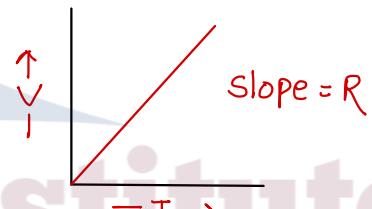

BOARD-2023

29. On increasing the temperature, the resistivity of semiconductor
 \Rightarrow Decreases.

30. Draw a Labelled diagram of wSB and obtain condition of balanced point by Kirchoff's Rule.

BOARD-2024

31. The SI Unit of Resistivity-
 $\Rightarrow \Omega \times m$


32. \Rightarrow find S.

$$\frac{30}{18} = \frac{10}{S}$$

$$S = \frac{10 \times 18}{30}$$

$$S = 6\Omega$$

33. Draw VI Graph for ohm's Law.
 \Rightarrow

34. Define electromotive force.

Potential difference across the terminal of cell when no current is drawn from the cell.

SI Unit \Rightarrow volt

LIKE
SUBSCRIBE
SHARE

Best of Luck for Exam