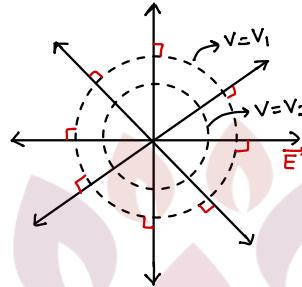


Chapter 2

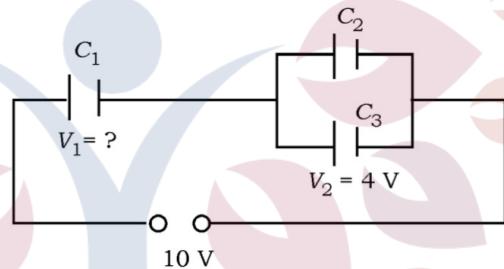
Electric Potential And Capacitance


Chapter 2

Electric Potential And Capacitance

BOARD: 2013

1. Define Equipotential Surface.


Ans- A surface is called equipotential surface if each point on surface has same potential.

2. (i) Define capacitance.

(ii) Draw a circuit diagram and derive relation of equivalent capacitance of series combination.

(iii) Find value of V_1 in -

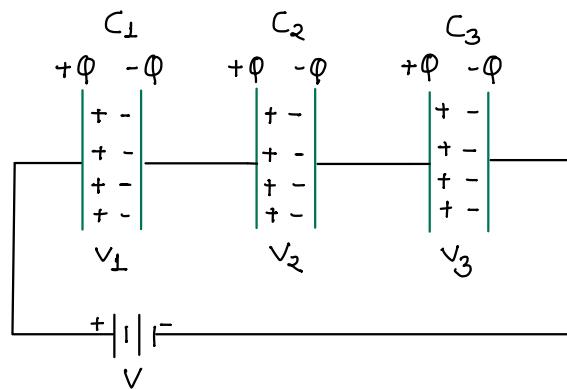
Ans- (i) Capacitance- Capacitance of a conductor is a measure of its ability to store charge.

$$\Phi \propto V$$

$$\Phi = CV$$

$$C = \frac{\Phi}{V}$$

If $V = 1$ volt (increase in potential)


$$C = \Phi$$

Amount of charge given to the conductor which can increase potential of conductor by 1 volt is called capacitance of conductor.

- ~~Scalar quantity~~
- $C/Volt$ or $Farad$

(ii) Series Combination of capacitor-

Suppose there are three capacitors of capacitance C_1, C_2 and C_3 are connected in series combination. Potential across capacitor are V_1, V_2 & V_3 and charge is Φ .

Total potential difference -

$$V_s = V_1 + V_2 + V_3 \quad \text{--- (1)}$$

$$\text{W.K.T} \quad \Phi = CV$$

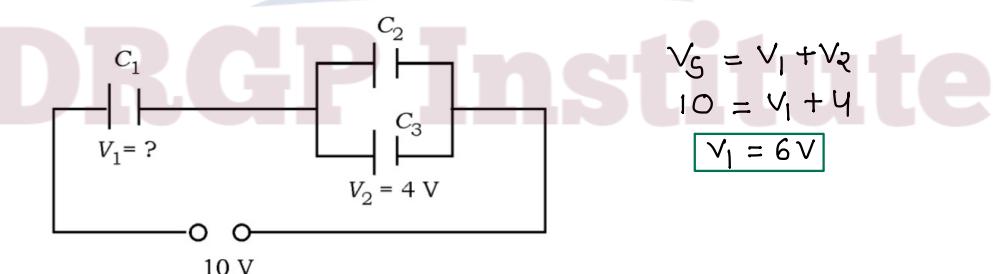
$$V = \frac{\Phi}{C}$$

$$\frac{\Phi}{C_s} = \frac{\Phi}{C_1} + \frac{\Phi}{C_2} + \frac{\Phi}{C_3}$$

$$\frac{\Phi}{C_s} = \Phi \left[\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right]$$

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

for n capacitors -


$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}$$

if all have same capacitance -

$$\frac{1}{C_s} = n \times \frac{1}{C} = \frac{n}{C}$$

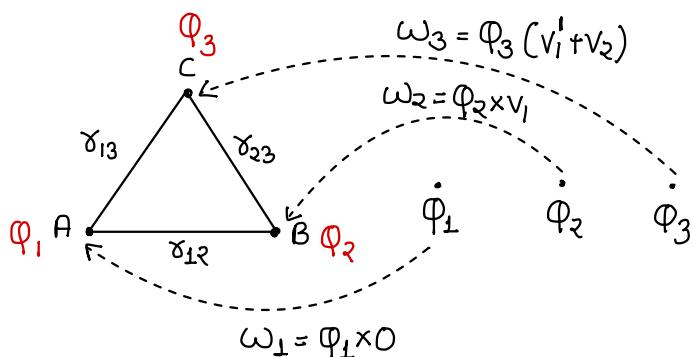
$$C_s = \frac{C}{n}$$

(iii)

$$V_s = V_1 + V_2$$

$$10 = V_1 + 4$$

$$V_1 = 6V$$


BOARD-2013 (Supp)

3. what is value of dielectric strength of air?

Ans- The maximum electric field that a dielectric medium can withstand without breaking of its insulating property is called dielectric strength. For air - 3×10^6 V/m.

4. find the expression of electric potential energy of a system of three charges.

Ans -

Potential due to Φ_1 at point B -

$$V_1 = \frac{K\Phi_1}{\delta_{12}}$$

Potential due to Φ_1 at point C -

$$V_1' = \frac{K\Phi_1}{\delta_{13}}$$

Potential due to Φ_2 at point C -

$$V_2 = \frac{K\Phi_2}{\delta_{23}}$$

Total work done to form system of three charges -

$$\omega = \omega_1 + \omega_2 + \omega_3$$

$$\omega = 0 + \Phi_2 V_1 + \Phi_3 (V_1' + V_2)$$

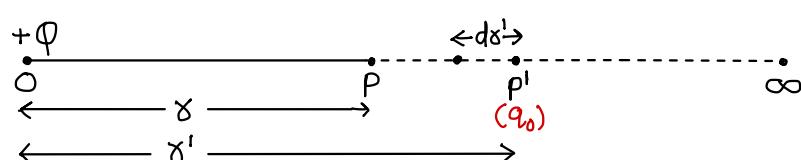
$$\omega = \Phi_2 \left(\frac{K\Phi_1}{\delta_{12}} \right) + \Phi_3 \left(\frac{K\Phi_1}{\delta_{13}} \right) + \Phi_3 \left(\frac{K\Phi_2}{\delta_{23}} \right)$$

$$\omega = \frac{K\Phi_1\Phi_2}{\delta_{12}} + \frac{K\Phi_1\Phi_3}{\delta_{13}} + \frac{K\Phi_2\Phi_3}{\delta_{23}}$$

This work done is stored in form P.E. \Rightarrow

$$U = \frac{K\Phi_1\Phi_2}{\delta_{12}} + \frac{K\Phi_1\Phi_3}{\delta_{13}} + \frac{K\Phi_2\Phi_3}{\delta_{23}}$$

5. Define electrostatic potential. Derive an expression for potential due to a point charge at a δ distance. [1+2 Marks]


Ans -

Work done to move a test charge from ∞ to a point in an electric field is called electric potential.

$$V = \frac{\omega}{\Phi}$$

Unit - $J/C \times \text{Volt}$

Potential Difference due to point charge -

Consider a point charge $+q$ placed at point O. We wish to determine potential at P point, situated at δ

distance. First we calculate work done from ∞ to point P. Φ is positive charge so, it exert a repulsive force at test positive charge q_0 . At some intermediate point P' (at γ' from ∞ point) repulsive force-

$$F = \frac{K\Phi q_0}{(\gamma')^2}$$

$$F = \frac{K\Phi q_0}{(\gamma')^2} \quad \text{①}$$

work done in moving charge by $d\gamma'$ distance against direction of force-

$$d\omega = \vec{F} \cdot d\vec{\gamma}'$$

$$d\omega = F d\gamma' \cos 180^\circ$$

$$d\omega = -Fd\gamma'$$

Total work done in moving charge from ∞ to at γ distance-

$$\int d\omega = \int_{\infty}^{\gamma} -Fd\gamma'$$

$$\omega = \int_{\infty}^{\gamma} -\frac{K\Phi q_0}{(\gamma')^2} d\gamma'$$

$$\omega = -K\Phi q_0 \int_{\infty}^{\gamma} \frac{1}{(\gamma')^2} d\gamma'$$

$$\omega = -K\Phi q_0 \left[-\frac{1}{\gamma'} \right]_{\infty}^{\gamma}$$

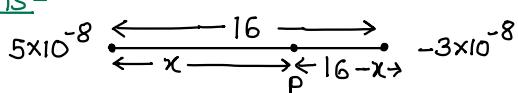
$$\omega = -K\Phi q_0 \left[-\frac{1}{\gamma} + \frac{1}{\infty} \right]$$

$$\omega = \frac{K\Phi q_0}{\gamma}$$

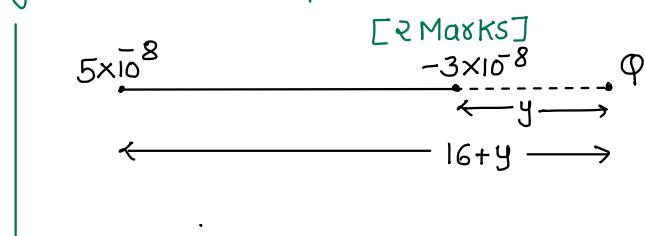
By definition of -

$$V = \frac{\omega}{q_0}$$

$$V = \frac{K\Phi q_0}{\gamma q_0}$$


$$V = \frac{K\Phi}{\gamma}$$

↓
Potential difference


BOARD-2014

6. Two point charges $5 \times 10^{-8} \text{ C}$ and $-3 \times 10^{-8} \text{ C}$ are located at 16 cm apart. At what point on the line joining these charges these electric potential will be 0?

Ans-

Suppose at P point potential is zero.

$$\frac{K(5 \times 10^{-8})}{x} + \frac{K(-3 \times 10^{-8})}{(16-x)} = 0$$

$$K \times 10^{-8} \left[\frac{5}{x} - \frac{3}{16-x} \right] = 0$$

$$\frac{5(16-x) - 3(x)}{x(16-x)} = 0$$

$$80 - 5x - 3x = 0$$

$$80 = 8x$$

$$x = 10 \text{ cm}$$

(from $5 \times 10^{-8} \text{ C}$)

$$16-x = 6 \text{ cm}$$

(from $-3 \times 10^{-8} \text{ C}$)

$$\frac{K(5 \times 10^{-8})}{16+y} + \frac{K(-3 \times 10^{-8})}{y} = 0$$

$$K \times 10^{-8} \left[\frac{5}{16+y} - \frac{3}{y} \right] = 0$$

$$\frac{5(y) - 3(16+y)}{y(16+y)} = 0$$

$$5y - 48 - 3y = 0$$

$$2y = 48$$

$$y = 24 \text{ cm}$$

(from $-3 \times 10^{-8} \text{ C}$)

$$16+y = 40 \text{ cm}$$

(from $5 \times 10^{-8} \text{ C}$)

7. Define electric capacity. Derive an expression for the capacitance of a parallel plate capacitor in which a dielectric medium of dielectric constant K fills the space b/w the plates. Draw the necessary diagram.

⇒ Suppose we have parallel plate capacitor of two identical metallic plates whose area is A. Both plates are separated by small distance d and in which dielectric medium of dielectric constant K is filled. Capacitance of P.P.C in vacuum is C_0 -

$$C_0 = \frac{A \epsilon_0}{d} \quad \text{--- (1)}$$

A = Area of plate

d = Distance b/w plates

If C_m is capacitance of capacitor after filling medium with K dielectric constant.

$$C_m = \frac{\Phi}{V_m} \quad \text{--- (2)}$$

$$\text{where } V_m = E_m d \quad \text{--- (3)}$$

$$E_m = \frac{E_0}{K} = \frac{\sigma}{\epsilon_0 K}$$

put in eqⁿ (3)

$$V_m = \frac{\sigma}{\epsilon_0 K} d$$

put in eqⁿ (2)

$$C_m = \frac{\Phi}{\frac{\sigma d}{\epsilon_0 K}} = \frac{\Phi \epsilon_0 K}{\sigma d}$$

$$\sigma = \frac{\Phi}{A}$$

$$\Phi = \sigma A$$

$$C_m = \frac{\sigma A \epsilon_0 K}{\sigma d}$$

$$C_m = \frac{A \epsilon_0 K}{d}$$

$$\text{from eqn ① } C_0 = \frac{A \epsilon_0}{d}$$

$$C_m = C_0 K$$

BOARD-2015

8. Calculate the potential at a point due to a charge $4 \times 10^{-9} \text{ C}$ located $9 \times 10^{-2} \text{ m}$ away from it.

Ans-

$$V = \frac{KQ}{r}$$

$$V = \frac{9 \times 10^9 \times 4 \times 10^{-9}}{9 \times 10^{-2}}$$

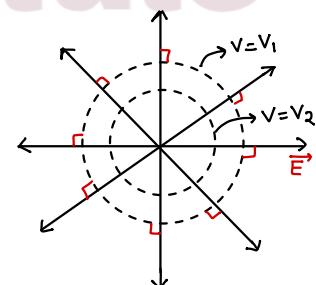
$$V = 4 \times 10^2 \text{ volt}$$

9. (a) obtain a relation for equivalent capacitance of the series combination of capacitors. Draw circuit diagrams.
 (b) 10 Capacitors each of capacity $10 \mu\text{F}$ are joined first in series and then in parallel. write the value of product of equivalent capacitances.
 (c) what will be the value of capacitance of a $4 \mu\text{F}$ capacitor if a dielectric of dielectric constant 2 is inserted fully b/w the plates of parallel plate capacitors.

[3+4/2+4/2=4 Marks]

Ans- (a) ✓

$$(b) C_s = \frac{C}{n} = \frac{10 \mu\text{F}}{10} = 1 \mu\text{F} \quad C_p = nC = 10 \times 10 \mu\text{F} = 100 \mu\text{F}$$


$$C_s \cdot C_p = 1 \times 100 = 100 \mu\text{F}$$

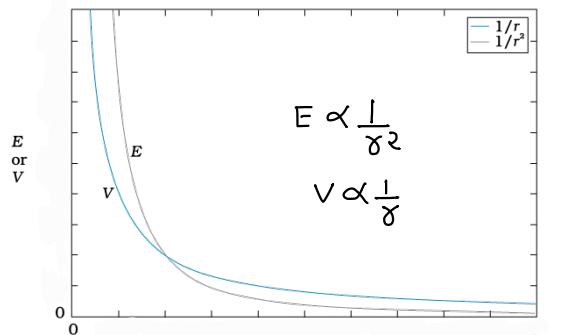
$$(c) C_m = C_0 K = 4 \times 2 = 8 \mu\text{F}$$

BOARD-2016

10. Draw equipotential surface for a single charge.

Ans-

11. (a) write the definition of electric potential.


(b) calculate electric potential due to a point charge Q at a distance r from it.

(c) Draw a graph b/w electrical potential V and distance r for a point charge Q .

Ans- (a) ✓

(b) ✓

(c) Graph (B/w V & r)

$$E = \frac{K\phi}{r^2}$$

$$V = \frac{K\phi}{r}$$

BOARD-2017

12. A parallel plate capacitor with air has a capacity of 8 pF. calculate the capacity if the distance b/w the plates is halved and the space b/w them is fully filled a substance of dielectric constant 5.

Ans-

$$\text{Given: } C_0 = \frac{A\epsilon_0}{d} = 8 \text{ pF}$$

$$K = 5$$

After fill medium and distance reduced to half-

$$C_m = \frac{A\epsilon_0 K}{d/2}$$

$$C_m = \frac{2A\epsilon_0 K}{d}$$

$$C_m = 2K \left(\frac{A\epsilon_0}{d} \right)$$

$$C_m = 2 \times 5 \times 8 \text{ pF} = 80 \text{ pF}$$

BOARD-2017 (Supp.)

13. Explain that -

- (i) Inside a conductor electrostatic field is zero.
- (ii) Electrostatic potential is constant throughout the volume of the conductor. [1+1 = 2 Marks]

Ans- (i) Because in a conductor, the charges always go and settle on the conductor's surface. So, there is no charge inside and due to it electrostatic field is zero.

(ii) Electric field inside a conductor is zero.

$$E = -\frac{dV}{dr}$$

if $E = 0$
then $\frac{dV}{dr} = 0$

$$V = \text{Constant}$$

14. Define capacitor. Derive relation for equivalent capacitance in the series combination of capacitor.

Ans- Capacitor is an arrangement of two identical conductor separated by an insulator or dielectric substance.

BOARD-2018

15. Write the name of physical quantity which have unit J/C . Is it vector or scalar quantity. [1 Mark]

Ans- (i) Electric potential
(ii) It is scalar quantity.

16. What do you mean by energy stored in charged capacitor?

Ans- When we move charges from one plate of capacitor to another plate then amount of work done to move charge will be energy stored in charged capacitor.

$$U = \frac{1}{2}CV^2 \text{ or } \frac{1}{2}\Phi V \text{ or } \frac{1}{2}\frac{\Phi^2}{C}$$

BOARD-2018 (Supp.)

No Questions from current syllabus

BOARD-2019

17. Calculate electric potential at a point 1m distance from point charge of $10^{-9} C$. [1 Mark]

Ans- $V = \frac{Kq}{r} = \frac{9 \times 10^9 \times 10^{-9}}{1} = 9 \text{ volt.}$

18. Find equivalent conductance b/w A & B.

Ans- C_2 & C_3 are in parallel-

$$C_{23} = C_2 + C_3$$

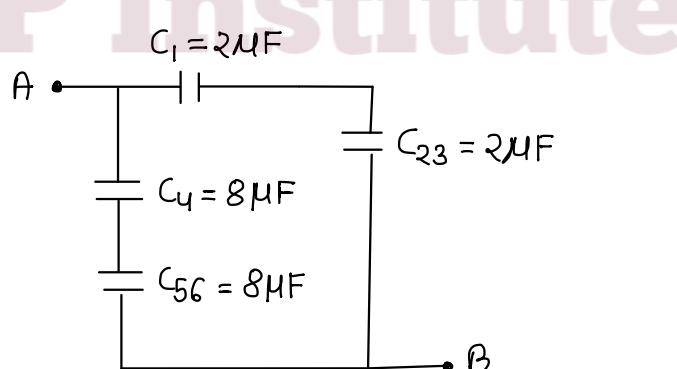
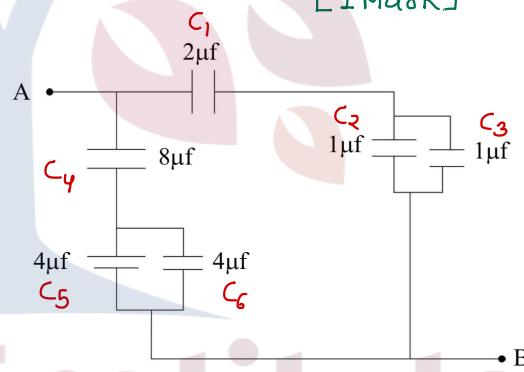
$$C_{23} = 2 \mu F$$

C_5 & C_6 are in parallel-

$$C_{56} = C_5 + C_6$$

$$C_{56} = 8 \mu F$$

→ C_1 & C_{23} are in series



$$\frac{1}{C'} = \frac{1}{C_1} + \frac{1}{C_{23}}$$

$$\frac{1}{C'} = \frac{1}{2} + \frac{1}{2}$$

$$C' = 1 \mu F$$

C_4 & C_{56} are in series $\Rightarrow \frac{1}{C''} = \frac{1}{C_4} + \frac{1}{C_{56}} = \frac{1}{8} + \frac{1}{8}$

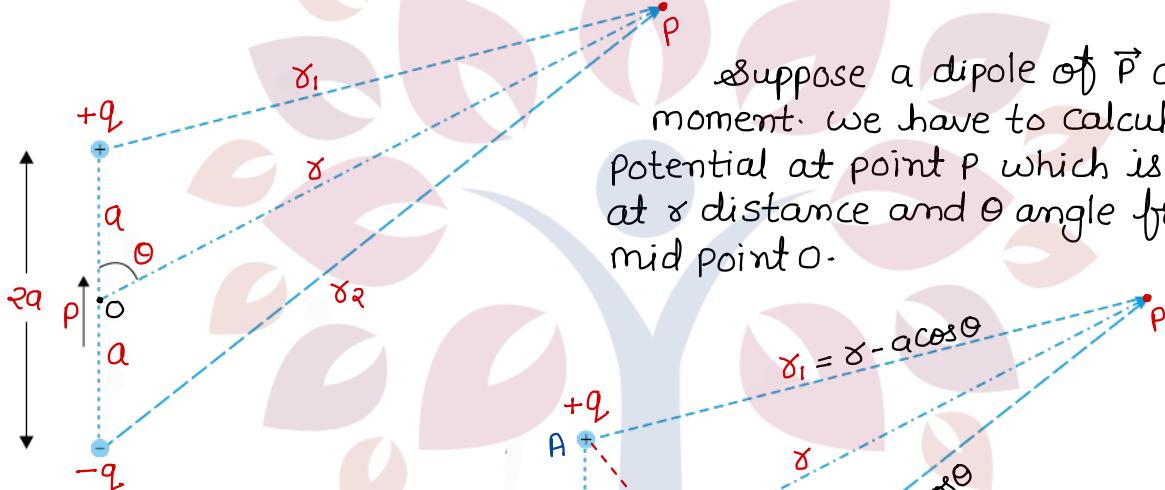
$$C'' = 4 \mu F$$

C' & C'' are in parallel -

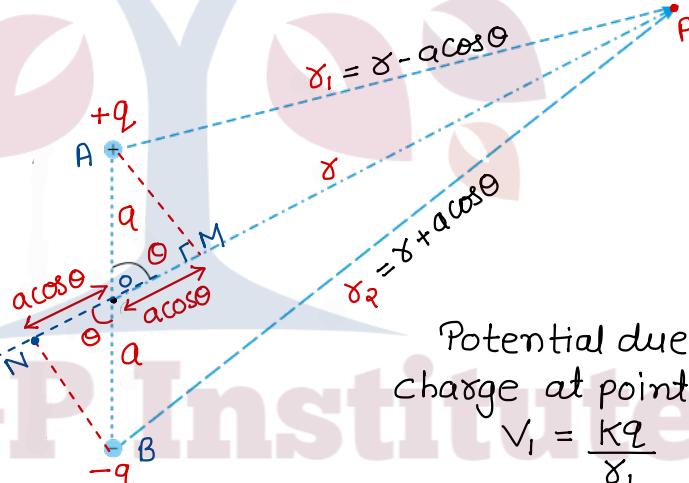
$$C = C' + C''$$

$$C = 5 \mu F$$

BOARD-2020


19. Define Dielectric constant of medium. [1 Mark]

Ans. Ratio of permittivity of medium and permittivity of vacuum or free space is known as dielectric constant or relative permittivity.


$$\epsilon_r \text{ or } K = \frac{\epsilon_m}{\epsilon_0} \quad \text{unitless}$$

20. Define electric potential. Obtain an expression of electric potential due to an electric dipole at any point (γ, θ) . Draw necessary diagram. [1+2+1=4 Marks]

Ans -

Suppose a dipole of \vec{P} dipole moment. we have to calculate potential at point P which is situated at γ distance and θ angle from mid point O.

$$\text{Potential due to } +q \text{ charge at point P} - V_1 = \frac{Kq}{r_1}$$

Potential due to $-q$ charge at point P -

$$V_2 = -\frac{Kq}{r_2}$$

Total potential difference - $V = V_1 + V_2$

$$V = \frac{Kq}{r_1} - \frac{Kq}{r_2}$$

$$V = Kq \left[\frac{1}{r_1} - \frac{1}{r_2} \right] = Kq \left[\frac{r_2 - r_1}{r_1 r_2} \right]$$

$$V = Kq \left[\frac{(\gamma + a \cos \theta) - (\gamma - a \cos \theta)}{(\gamma - a \cos \theta)(\gamma + a \cos \theta)} \right]$$

$$V = \frac{Kq [\gamma + a \cos \theta - \gamma + a \cos \theta]}{\gamma^2 - a^2 \cos^2 \theta}$$

$$V = \frac{Kq[2a \cos \theta]}{\gamma^2}$$

$$\gamma > a \\ \text{So } \gamma^2 - a^2 \cos^2 \theta \approx \gamma^2$$

$$V = \frac{KPC \cos \theta}{\gamma^2} \quad \left\{ P = q \cdot 2a \right\}$$

(i) A point on axial line - $\theta = 0^\circ$ $\cos 0^\circ = 1$ $V = \frac{KP}{\gamma^2}$

(ii) A point on equatorial line - $\theta = 90^\circ$ $\cos 90^\circ = 0$ $V = 0$

BOARD-2020 (Supp)

21. The diameter of the plates of a parallel plate capacitor is 0.20 m. If the distance b/w plates is 0.10 m and the medium is air, then calculate the capacitance of capacitor.

Ans. Diameter of plates $\Rightarrow 0.20 \text{ m}$

$$\text{radius} \Rightarrow 0.10 \text{ m}$$

$$d \Rightarrow 0.10 \text{ m}$$

$$K \Rightarrow 1 \text{ (for air)}$$

$$C = \frac{A \epsilon_0 K}{d} = \frac{\pi \delta^2 \epsilon_0 K}{d}$$

$$C = \frac{22}{7} \times 0.10 \times 0.10 \times 8.85 \times 10^{-12} \times 1$$

$$C =$$

BOARD-2021

22. Draw equipotential surface of a point charge.

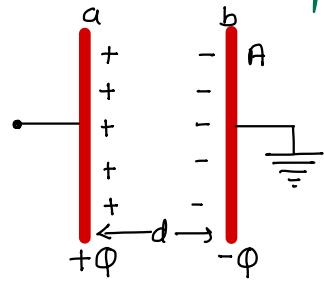
23. The capacitance of conductor in air is $2 \mu\text{F}$. If it placed in a medium, then its capacitance becomes $12 \mu\text{F}$. The dielectric constant of medium will be _____.

Ans. $C_m = C_0 K$

$$C_0 = C_a$$

$$C_m = C_a K$$

$$K = \frac{C_m}{C_a} = \frac{12}{2} = 6$$


BOARD-2022

24. Write the value of electric potential at a distance γ from the middle point of the dipole on the axis of the electric dipole of dipole moment P . [1 Mark]

$$\Rightarrow V = \frac{KPC \cos \theta}{\gamma^2} \quad \text{for axis } \theta = 0^\circ \quad \text{So, } V = \frac{KP}{\gamma^2}$$

25. If the area of each conducting plate of parallel plate capacitor is A & d is the separation b/w them, then derive its capacitance formula.

⇒ Suppose we have parallel plate capacitor. Area of both plate is A and distance b/w both plate is d . The two plate have $+Q$ & $-Q$ charge.

Electric field b/w plates are -

$$E = E_a + E_b$$

$$E = \frac{\sigma}{2\epsilon_0} + \frac{\sigma}{2\epsilon_0}$$

$$E = \frac{\sigma}{\epsilon_0} \quad \text{--- (1)}$$

Capacitance

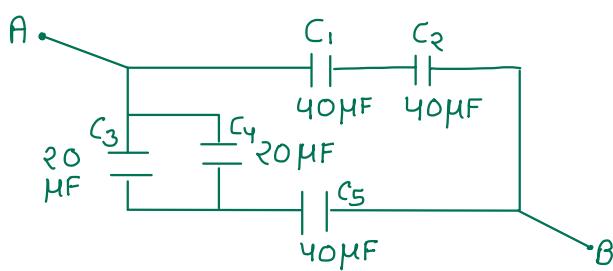
$$C = \frac{Q}{V} \quad \text{--- (2)}$$

$$\text{W.K.T} \quad V = E \cdot d$$

from eqⁿ (1)

$$V = \frac{\sigma \cdot d}{\epsilon_0}$$

$$V = \frac{\sigma d}{A\epsilon_0} \quad \left\{ \sigma = \frac{Q}{A} \right\}$$


put in eqⁿ (2)

$$C = \frac{Q}{\frac{\sigma d}{A\epsilon_0}}$$

$$\text{or} \quad C = \frac{A\epsilon_0}{d}$$

DRGP Institute

26. Find equivalent capacitance -

Solution -

(i) C_3 & C_4 are in parallel -

$$C_{34} = C_3 + C_4$$

$$C_{34} = 40 \mu F$$

(ii) C_{34} & C_5 are in series -

$$\frac{1}{C'} = \frac{1}{C_{34}} + \frac{1}{C_5}$$

$$\frac{1}{C'} = \frac{1}{40} + \frac{1}{40} = \frac{2}{40}$$

$$C' = 20 \mu F$$

C_1 & C_2 are series -

$$\frac{1}{C''} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$C'' = 20 \mu F$$

C' & C'' are in parallel

$$C = C' + C''$$

$$C = 20 + 20$$

$$= 40 \mu F$$

BOARD-2023

27. Calculate the electric potential at a point due to a charge of $2 \times 10^{-9} C$ located $9 \times 10^{-4} m$ away from it. [1.5 Marks]

$$\Rightarrow V = \frac{KQ}{r}$$

$$V = \frac{9 \times 10^9 \times 2 \times 10^{-9}}{9 \times 10^{-4}}$$

$$V = 2 \times 10^4 \text{ volt}$$

28. Find the expression for electric potential energy of a system of three point charges. [1.5 Marks]

BOARD-2024

29. The value of dielectric strength of air -

A. $3 \times 10^6 \text{ V/m}$

B. $3 \times 10^8 \text{ V/m}$

C. zero

D. ∞

Answer - A

30. Draw equipotential surface for a point charge ($q > 0$).

31. Three capacitors of capacitance $6 \mu F$ are connected in parallel. Calculate equivalent capacitance.

\Rightarrow

$$C = C_1 + C_2 + C_3$$

$$C = 6 + 6 + 6$$

$$C = 18 \mu F$$

LIKE
SUBSCRIBE
SHARE

Best of Luck for Exam