

Chapter 11

Dual Nature of Radiation and Matter

Chapter 11

Dual Nature of Radiation and Matter

BOARD-2013

1. (a) Define the following in the phenomenon of PEE-

- (i) work function
- (ii) Stopping potential

(b) calculate the energy of a photon of wavelength 3.31A° .

⇒

(a) (i) work function - The minimum amount of energy required to remove e^- from metal surface is called work function.

$$\phi = \omega_0 = h\nu_0$$

(ii) Stopping potential - -ve potential of anode which can reduce PE current to the zero is called stopping potential.

$$eV_0 = \frac{1}{2}mv_{max}^2$$

(b)

$$\lambda = 3.31\text{A}^{\circ}$$

$$E = ?$$

$$E = h\nu$$

$$E = \frac{hc}{\lambda}$$

$$E = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{3.31 \times 10^{-10}}$$

$$E = 6 \times 10^{-16} \text{ J}$$

BOARD-2013 (Supp)

2. The work function of Cs metal is 2.12 eV when light of frequency $7 \times 10^{14}\text{ Hz}$ is incident on a metal surface e^- are emitted for emitted e^- ⇒

(i) find out max K.E

(ii) find out max. speed

$$\begin{aligned} \omega_0 &= 2.12\text{ eV} = 2.12 \times 1.6 \times 10^{-19} = 3.424 \times 10^{-19} \text{ J} \\ \nu &= 7 \times 10^{14} \text{ Hz} \end{aligned}$$

$$(i) K.E_{max} = h\nu - \omega_0$$

$$K.E_{max} = (6.62 \times 10^{-34} \times 7 \times 10^{14}) - (3.424 \times 10^{-19})$$

$$K.E_{max} = 1.21 \times 10^{-19} \text{ J}$$

$$= \frac{1.21 \times 10^{-19}}{1.6 \times 10^{-19}} = 0.756 \text{ eV}$$

$$(ii) v_{max} = ?$$

$$\frac{1}{2}mv_{max}^2 = 1.21 \times 10^{-19}$$

$$v_{max} = \sqrt{\frac{1.2 \times 10^{-19} \times 2}{9.1 \times 10^{-31}}}$$

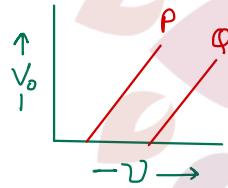
$$v_{max} = 5.16 \times 10^3 \text{ m/s}$$

BOARD-2014

3. A ball of mass 0.12 kg is moving with a speed of 20 m/s find its de Broglie wavelength (plank's constant $h = 6.62 \times 10^{-34} \text{ Js}$).

$$\Rightarrow m = 0.12 \text{ kg} \quad v = 20 \text{ m/s} \quad \lambda = ?$$

$$h = 6.62 \times 10^{-34} \text{ Js}$$


$$\text{wavelength } \lambda = \frac{h}{p} = \frac{h}{mv}$$

$$\lambda = \frac{6.62 \times 10^{-34}}{0.12 \times 20}$$

$$\lambda = 2.8 \times 10^{-34} \text{ m}$$

4. which metal will have higher wavelength & work function?

\Rightarrow

Threshold frequency will be higher for metal Q. Due to it

P = Have higher wavelength

Q = Have higher workfunction

5. A monochromatic light source of frequency $6 \times 10^{14} \text{ Hz}$ emits $2 \times 10^{-3} \text{ J}$ of energy per second. Find the number of photons emitted by the source per second.

\Rightarrow

$$V = 6 \times 10^{14} \text{ Hz}$$

$$P = 2 \times 10^{-3} \text{ J/s} \text{ or } \omega$$

$$n = ?$$

for one photon

$$P = \frac{E}{t}$$

for n photon

$$P = \frac{nE}{t}$$

$$n = \frac{Pt}{E}$$

$$n = \frac{2 \times 10^{-3} \times 1}{6.62 \times 10^{-34} \times 6 \times 10^{14}}$$

$$n = 5 \times 10^{15} \text{ photon/s}$$

BOARD-2015

6. Define stopping potential.

7. If the work function of a metal is 3.31×10^{-19} Joule, then calculate its threshold frequency in Hz.

$$\Rightarrow \omega_0 = h\nu_0$$

$$\nu_0 = \omega_0/h$$

$$\nu_0 = \frac{3.31 \times 10^{-19}}{6.62 \times 10^{-34}}$$

$$\nu_0 = 8 \times 10^{14} \text{ Hz}$$

8. Write deBroglie's hypothesis. Obtain formula for deBroglie wavelength of an electron which is accelerated from rest through a potential V .

\Rightarrow **De-Broglie's hypothesis** - Just like light, small moving particles like e^- also act as both particle and wave. Wave associated with these particles known as matter wave.

$$\lambda = \frac{h}{p}$$

$$\lambda = \frac{h}{mv} \quad \text{--- (1)}$$

$$E_K = \frac{1}{2}mv^2$$

$$E_K = \frac{1}{2} \frac{m^2v^2}{m}$$

$$m^2v^2 = 2mE_K$$

$$p^2 = (mv)^2 = 2mE_K$$

$$p \text{ or } mv = \sqrt{2mE_K}$$

$$\text{put } p = mv = \sqrt{2mE_K}$$

$$\lambda = \frac{h}{\sqrt{2mE_K}} \quad \text{--- (2)}$$

$$E_K = qV$$

$$\lambda = \frac{h}{\sqrt{2mqV}}$$

for e^-

$$\left\{ \begin{array}{l} h = 6.62 \times 10^{-34} \text{ Js} \\ m = 9.1 \times 10^{-31} \text{ kg} \\ q = 1.6 \times 10^{-19} \text{ C} \end{array} \right.$$

$$\lambda = \frac{12.27}{\sqrt{V}} \text{ Å}$$

↳ Potential for acceleration

BOARD:- 2015 (Supp)

9. The K.E of proton and α -particle is same which of these particles will have the smallest de-Broglie wavelength?

$$\Rightarrow \lambda = \frac{h}{\sqrt{2mE_K}}$$

K.E is same then

$$\frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{m_\alpha}{m_p}} = \sqrt{\frac{4m_p}{m_p}}$$

$$\frac{\lambda_p}{\lambda_\alpha} = \frac{2}{1}$$

$$\lambda_p : \lambda_\alpha = 2 : 1$$

↳ smallest λ .

10. The threshold frequency of a metal is $2.2 \times 10^{14} \text{ Hz}$. If a light of $7.2 \times 10^{14} \text{ Hz}$ is incident on the metal then find the stopping potential for PEE.

⇒

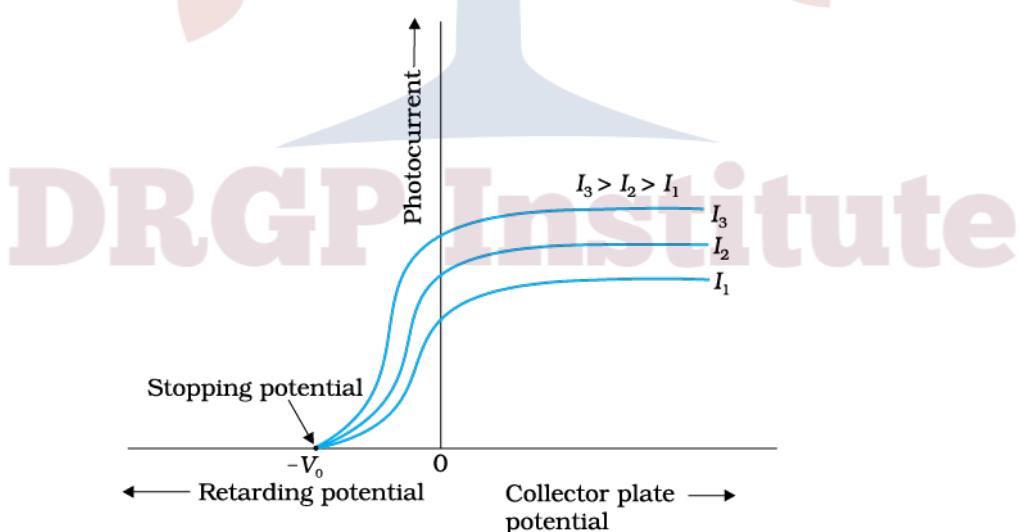
$$\frac{1}{2}mv_{\max}^2 = ev_0 = h\nu - h\nu_0$$

$$v_0 = \frac{h}{e} (\nu - \nu_0)$$

$$v_0 = \frac{6.62 \times 10^{-34}}{1.6 \times 10^{-19}} (7.2 \times 10^{14} - 2.2 \times 10^{14})$$

$$v_0 = 2.06 \text{ volt.}$$

BOARD-2016


11. The threshold frequency for Cs metal is $5.16 \times 10^{14} \text{ Hz}$. Find its work function in eV.

⇒

$$\begin{aligned} \phi \text{ or } \nu_0 &= h\nu_0 \\ &= 6.62 \times 10^{-34} \times 5.16 \times 10^{14} \text{ J} \\ &= \frac{6.62 \times 10^{-34} \times 5.16 \times 10^{14}}{1.6 \times 10^{-19}} \\ &= 2.13 \text{ eV} \end{aligned}$$

12. What is stopping potential or cut voltage? Draw a graph of PE current variation with collector plate potential for two incident radiation of same frequency & different intensity. [1+1=2]

⇒

BOARD-2017

13. What is PEE? on which two PE current depends?

⇒ When radiation of suitable frequency incident on metal surface then e^- comes out from the surface of metal. This emitted e^- is called photoelectron & current flowing due to these e^- is called photoelectric current & this effect is called PEE.

→ Photo electric current depends on -
 (i) Intensity of light
 (ii) Potential difference b/w electrodes

BOARD-2018

14. Find de-Broglie wavelength associated with an electron that is accelerated through a potential difference 10^4 volts.

$$\Rightarrow \lambda = \frac{12.27}{\sqrt{10^4}}$$

$$\lambda = 0.1227 \text{ Å}$$

15. Einstein's Photoelectric Current. Explain PEE with the help of this eqⁿ.

$$\Rightarrow \frac{1}{2}mv_{max}^2 = ev_0 = h\nu - h\nu_0$$

1. If $\nu < \nu_0$ then

$$\frac{1}{2}mv_{max}^2 = -ve \text{ (which is not possible)}$$

It means PEE only possible when $\nu \geq \nu_0$.

{ in this case $K.E_{max} \geq 0$ }

2. If we increase frequency of incident light (ν) then K.E of emitted e^- increases.
3. when photon incident on e^- of metal surface then e^- absorbs whole energy of photon in negligible time duration. So there is no time delay b/w incidence of light & emission of e^- .
4. There is no effect of intensity of incident light on K.E of emitted e^- .

BOARD-2019

16. Define threshold frequency.

→ The minimum frequency required to remove e^- from metal surface is called work function.

17. Find the de-Broglie wavelength associated with an electron that is accelerated through a potential difference 100 Volts.

$$\Rightarrow \lambda = \frac{12.27}{\sqrt{V}} \text{ Å}$$

$$\lambda = \frac{12.27}{\sqrt{100}} \text{ Å}$$

$$\lambda = 1.227 \text{ Å}$$

BOARD-2020

18. why can't PEE be explained on the basis of wave theory of light ? write any two reasons.

⇒

- According to wave theory when we increase intensity of incident light, K.E. of e^- increases. But practically we observe there is no effect of intensity on K.E. of e^- .
- According to wave theory energy is distributed in all surface e^- so, -
 (i) Light of any energy can cause PEE.
 (ii) There is time delay b/w incidence of light and emission of e^- .
 [Both are false].

BOARD-2021

19. The formula of momentum of photon is -

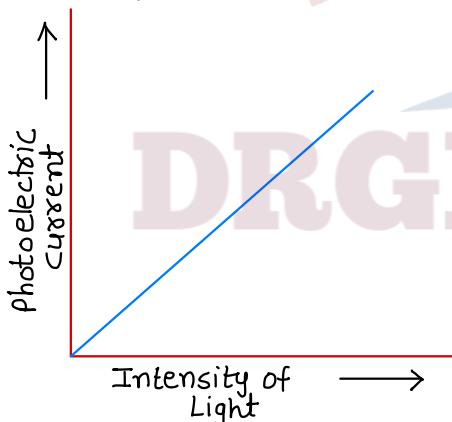
(a) $h\nu$ (b) h/λ (c) $h\nu/c$ (d) $h/c\nu$

$$P = h/\lambda$$

$$\text{so, } \lambda = \frac{h}{P}$$

20. The max. K.E. of an emitted photo electron by a metal is 2.2 eV. The value of stopping potential will be _____ volt.

⇒


$$K.E_{\text{max}} = eV_0$$

$$2.2 \text{ eV} = eV_0$$

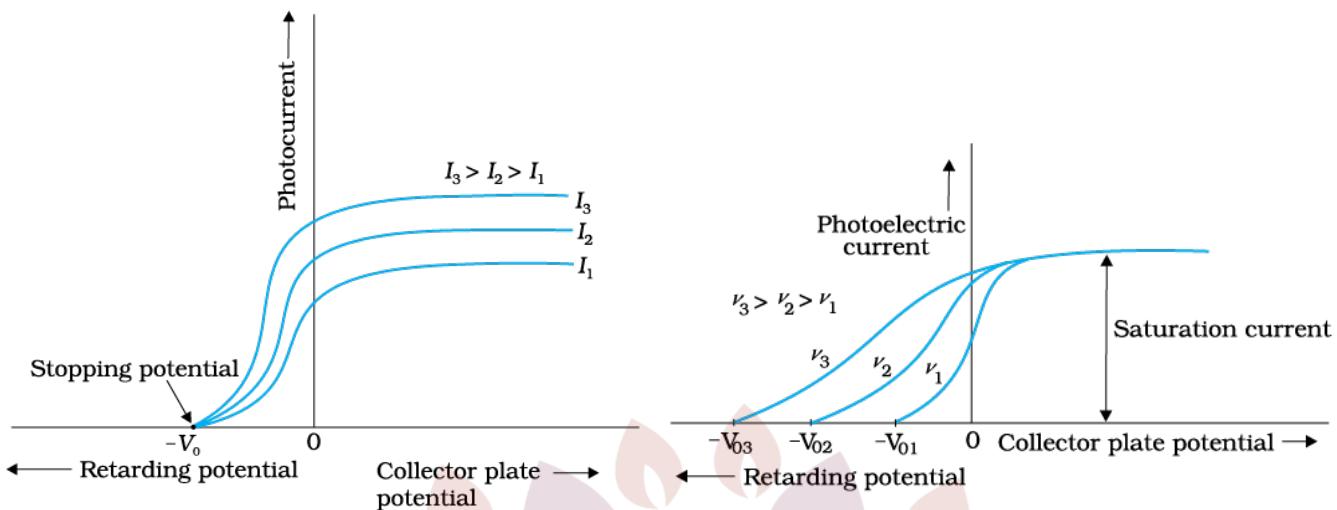
$$V_0 = 2.2 \text{ volt}$$

21. what is PEE? Draw a graph b/w PE current and intensity of incident light.

⇒

when radiation of suitable frequency incident on metal surface then e^- comes out from the surface of metal. This emitted e^- is called photoelectron & current flowing due to these e^- is called photoelectric current & this effect is called PEE.

BOARD-2022


22. If _____ of two particles are equal, then their de Broglie wavelength will be equal.

⇒ momentum

$$\lambda = \frac{h}{P}$$

$$\frac{\lambda_1}{\lambda_2} = \frac{P_2}{P_1} \quad \text{if } P_1 = P_2 \text{ then } \lambda_1 = \lambda_2$$

23. Graph b/w photoelectric current v/s collector plate potential -

24. Einstein's Photoelectric Current. Explain PEE with the help of this eqⁿ.

BOARD-2023

25. Define work function & stopping potential.

26. If the work function of Cs metal is 2.14 eV then find its threshold frequency in Hz.

⇒

$$\begin{aligned}\phi &= h\nu_0 \\ \nu_0 &= \phi/h \\ \nu_0 &= \frac{2.14 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}} \\ \nu_0 &= 0.517 \times 10^{15} \text{ Hz}\end{aligned}$$

BOARD-2024

27. The max. K.E of a photo electron emitted from a metal is 1.8 eV. The value of stopping potential will be -

⇒

$$\begin{aligned}K.E_{max} &= eV_0 \\ 1.8 \text{ eV} &= eV_0 \\ V_0 &= 1.8 \text{ Volt}\end{aligned}$$

28. The formula for the de Broglie wavelength associated with an e⁻ accelerated by a potential 'V' is $\lambda = \frac{1.227}{\sqrt{V}} \text{ Å}$

⇒

$$\lambda = \frac{1.227}{\sqrt{V}} \text{ Å}$$

29. A 20 watt bulb emits 5×10^9 photons per second. Find the energy of each photon.

⇒

$$\begin{aligned}P &= nE/t \\ E &= \frac{Pt}{n}\end{aligned}$$

$$E = \frac{20 \times 1}{5 \times 10^9}$$

$$E = 4 \times 10^{-9} \text{ J}$$

LIKE
SUBSCRIBE

SHARE
Best of Luck for Exam

